
Chapter 2

Minimization/Optimization –
Problems

Literature

• W. PRESS et al., Numerical recipes, Cambridge university press

• F.S. ACTON, Numerical Methods that work, Mathematical Association
of America

Optimization is of enormous importance in physics, engineering, eco-
nomics, information technology and in many other fields. The layout of
electric circuits on a chip, timetables, the optimum load of a pipeline sys-
tem are a few, typical examples.

In general we have a problem which is determined by n parameters
and one has to find the specific values of those parameters for which a so-
called cost function develops a maximum/minimum. This an be expressed
in a more formal way:

There is a finite or infinite number of states. Each state is de-
fined by a set of n real parameters {pi | i = 1, . . . , n}. The set of
all states spans the search space S. Each state is correlated to a
real number, its cost. The function generated this way is the cost
function F (. . .). Thus, if F (. . .) is this cost function, S the search
space, and R the set of real numbers, we have:

F : S −→ R.

It is the purpose of an optimization algorithm to find the state
for which the cost function develops a (global) maximum/mi-
nimum.

23

Is the cost function at least once differentiable in its parameters then
mathematics will provide us with well defined (deterministic) algorithms
to find the maximum/minimum of the cost function. Such methods will
be discussed in Secs. 2.1 to 2.3.

In all other cases methods which have been developed from evolution-
ary models come to play. Most of the time one starts with some state x ∈ S

and modifies this state using stochastic methods. Does the cost function re-
sult in a bigger/smaller value the new state is accepted and serves as a
basis for the next modification, otherwise the old state is modified again.
This is repeated until the maximum/minimum has been found. This is
the most simple form of a Mutation-Selection Algorithm. More sophisticated
methods will be discussed in Secs. 2.4 to 2.8.

2.1 Continuous Degrees of Freedom

We will discuss problems with many continuous degrees of freedom for
which standard methods fail. Some representative examples are

1. The ground state energyE0 of a quantum mechanical system is given
by the minimum of the energy expectation value

E0 = min
ψ

〈

ψ
∣
∣
∣Ĥ
∣
∣
∣ψ
〉

〈ψ |ψ〉 . (2.1)

Expressed in a complete orthonormal basis set {|Φi〉} this is equiva-
lent to

E0 = min
c

c†Hc

c†c
, (2.2)

where c stands for the vector of expansion coefficients of the ground
state vector and H is the Hamilton matrix in the basis {|Φi〉}, i.e.:

Hij =
〈

Φi

∣
∣
∣Ĥ
∣
∣
∣Φj

〉

.

2. Variational ansatz with parameters η

|ψ〉 = |ψ(η)〉, η ∈ R
n parameters. (2.3)

Again the energy expectation value is to be minimized:

E0 = min
η

〈

ψ(η)
∣
∣
∣Ĥ
∣
∣
∣ψ(η)

〉

〈ψ(η) |ψ(η)〉 . (2.4)

24

3. The solution of a set of linear algebraic equations can be viewed as min-
imization problem

B x = b ⇐⇒ min
x

‖B x − b‖2

= min
x

[
x†B†Bx − 2b†Bx + ‖x‖2

]
. (2.5)

For large-dimensional matrices B, the direct inversion may easily
exceed present computer power. We will see that iterative minimiza-
tion procedures come in handy also for this problem.

4. In quantum molecular dynamics one is interested in the dynamical
properties of molecules or solids. In an entirely classical approach,
only the positions of the nuclei, the centers of the atoms under con-
sideration, are accounted for and empirical forces among the nuclei
are introduced, which effectively mimic parts of the quantum me-
chanical features. In general only effective two-particle forces are em-
ployed, which, for the i-th particle, are of the form

Fi =
∑

j

f(Ri,Rj),

with Ri being the coordinate of the i-th particle. The classical equa-
tions of motion for the nuclei read

miR̈i = f({Ri}).

A first step towards complete quantum molecular dynamics con-
sists in treating at least the forces quantum mechanically by solv-
ing the electron dynamics quantum mechanically while the nuclei
are treated as classical degrees of freedom. This approach is a sig-
nificant improvement and goes beyond the classical approximation
and is known under Born-Oppenheimer approximation. It can be justi-
fied by the observation that the mass of the nuclei is roughly 2000
times heavier than that of the electrons. The dynamics is then solved
in two steps. This way one will be able to assess the quality of the
Born-Oppenheimer approximation.

The first step consists in solving the electronic eigenvalue problem
for fixed positions {Ri} of the nuclei. This is a many-electron prob-
lem which, though in a fixed potential, is not soluble exactly. A wide-
spread approximation for such type of problems is the local-density
approximation (LDA) (the effective one-electron problem) for which
the Kohn-Sham equations

Ĥ({n},R)ψk(x) = εk ψk(x) (Kohn – Sham)

n(x) =
∑

k≤kF ermi

|ψk(x)|2 (2.6)

25

have to be solved self-consistently via the electronic density n(x).
The reasoning is that for low temperatures and fixed nuclei the elec-
tronic subsystem is in the ground-state. Since the motion of the nu-
clei is slow compared to that of the electrons, the dynamics of the nu-
clei is equivalent to an adiabatic change of the potential which leaves
the electronic subsystem always in the eigenstate (ground state) which
corresponds to the actual potential. The ground state energyE({Rj}),
consisting of contributions from the electrons and the nuclei, defines
the potential in which the nuclei move.

The second step consists in computing the force on the i-th particle
via the Hellmann-Feynman formula

Fi = − ∂

∂Ri
E({Rj}) = −

〈

ψ

∣
∣
∣
∣

∂

∂Ri
Ĥ

∣
∣
∣
∣
ψ

〉

. (2.7)

The change in the position of the nuclei for a small time-step is com-
puted via the classical equations of motion, driven by the ab-initio
forces. In hindsight we can scrutinize the reliability of the classical
approximation for the nuclei. We can separate one nucleus and make
a quadratic approximation to the ab-initio potential, leading to a har-
monic oscillator for which the exact quantum mechanical dynamics
can easily be obtained.

Molecular dynamics will be discussed in a later chapter. But the Car-
Parrinello method also contains aspects of minimization problems.
Often one is not interested in the vibrational modes but rather in
the equilibrium geometry. Thus, we need to minimize the ab-initio
potential

min
{Rj}

E({Rj}),

which is obviously a challenging task as it involves the self-consistent
solution of the electronic eigenvalue problem for each configuration
{Rj}. According to (2.4), the computation of the electronic ground-
state is itself a minimization problem. We can therefore cast the entire
problem into the form

min
{Ri},c

[

c†H(c)c

c†c
+
∑

i>j

V (Ri,Rf)

]

.

Contrary to (2.4), however, the Hamiltonian matrix H depends it-
self on the expansion coefficients c because of its dependence on the
density n(x). The last term in the above equation describes the bare
Coulomb interaction of the nuclei.

26

2.2 General Considerations on Quadratic Prob-

lems

A quadratic form is a scalar, quadratic function of a vector and is of the
form:

f(x) =
1

2
xTAx − bTx + c. (2.8)

[See also Eq. (2.5).] Here, A is aN×N matrix, x and b are vectors ∈ R
N , and

c is a scalar constant. We restrict the discussion to real-valued problems,
and we want to demonstrate that if the matrix A is symmetric (i.e.: AT =
A) and positive definite (i.e.: xTAx > 0 for any non-zero vector x ∈ R

N)
the quadratic form (2.8) is minimized by:

Ax = b. (2.9a)

To prove this we set the gradient of f(x) equal to zero:

∇f(x) = 0

=
1

2
∇
(
xTAx

)
−∇

(
bTx

)

=
1

2
ATx +

1

2
Ax − b (2.9b)

= Ax − b.

If A is not symmetric, i.e.: AT 6= A, then Eq. (2.9b) hints that one will find a
solution to the system Ãx = b with Ã = 1

2

(
AT + A

)
which is a symmetric

matrix.
It is now also possible to prove why the matrix A has to be positive

definite for Eq. (2.9a) to work. Let us assume that x is a point ∈ R
N which

satisfies Ax = b and minimizes the quadratic form f(x). Let e be an error
term:

f(x + e) =
1

2
(x + e)TA(x + e) − bT (x + e) + c

(A
T

=A)
=

1

2
xTAx + eT Ax

︸︷︷︸

=b

+
1

2
eTAe − bTx − bTe + c

=
1

2
xTAx − bTx + c− eTb

︸︷︷︸

=bT e

+
1

2
eTAe − bTe

= f(x) +
1

2
eTAe.

If the matrix A is positive definite, then the second term is positive for all
e 6= 0 ∈ R

N and, therefore, x minimizes f(x).
The number of degrees of freedom, i.e.: the number of elements of A

and b, is of order N2. If one of theses elements is modified the solution

27

x will change. This implies that the amount of information contained in
the solution is also of order N2. The gradient ∇f(x) has N components
of information. A good method based on gradients should therefore need
at most N iterations. The computational effort to compute the gradient N
times is O(N3), which is equivalent to the effort to compute the minimum
via

∇f(x) = Ax − b = 0 ⇒ x = A−1b (2.10)

directly. At first glance, the two approaches seem to be equivalent as far as
CPU time is concerned. This is not true, though, since iterative methods,
based on gradients, have several advantages

• For sparse matrices A the effort to compute the gradient is propor-
tional to the number of non-zero elements (typically O(nN), with
n << N); i.e.: the entire approach is of order O(nN2) instead of
O(N3).

• There is no need to really perform all N iterations. In most problems
a much smaller number of iterations suffices for a desired accuracy.

• It can do with any amount of memory. There are three possibilities

– keep the entire matrix in fast memory

– read it from hard disk in portions, which can be kept in memory

– generate the matrix elements from scratch as they are needed

• Optimally suited for parallelization or vectorization.

Method of Steepest Descent

The most elementary gradient-based method is the well-known steepest
descent. The outline of the algorithm is as follows

Algorithm 5 Steepest descent (draft)

Choose a suitable initial vector x0

for n = 0 to nmax do
calculate gradient gn = ∇f(x)

∣
∣
xn

new search direction rn = −gn
set xn+1 to the line minimum of f(x) in direction rn
if converged then EXIT

end for

When we take a step n, we choose the direction in which f(xn) de-
creases most quickly, and this is the direction opposite ∇f(xn) = Ax − b.

28

Suppose we start at the point x0. Our first step, along the direction of steep-
est descent, will fall somewhere on one of the solid lines in Fig. 2.1. Thus,
we will choose a point

x1 = x0 + λ0r0, r0 = b− Ax0 = −∇f(x0). (2.11)

The question is, how big a step we should take?
A line search is a procedure that chooses λ to

Figure 2.1: Line mini-
mum.

minimize f(x) along a line. This is the case when
the directional derivative df(x)/dλ is equal to zero.
By the chain rule

d

dλ
f(xn) = ∇f(xn)

T d

dλ
xn

(2.11)
= ∇f(xn)

T rn−1.

Setting this expression equal to zero, we find that
λ should be chosen so that r0 (the residual) and
∇f(x1) are orthogonal. As we always go to the re-
spective line minimum, successive gradients are
perpendicular. This is illustrated in the Fig. 2.1
which shows two successive search directions (gra-
dients) along with the contours of f(x). Obviously, if the gradients were
not orthogonal, we could still reduce f(x) by moving further in the direc-
tion of the old gradient. In mathematical terms the orthogonality of suc-
cessive gradients follows from the line minimum condition.

To determine λ we proceed with:

0 = rT1 r0

= (b− Ax1)
T
r0

= [b− A (x0 + λ0r0)]
T
r0

= (b− Ax0)
T
r0 − λ0 (Ar0)

T
r0

= (b− Ax0)
T

︸ ︷︷ ︸

=rT
0

r0 − λ0 rT0 Ar0

λ0 =
rT0 r0

rT0 Ar0

.

Another reason why the matrix A is to be positive definite! This result can
easily be generalized to step n and yields

λn =
rTnrn

rTnArn
, (2.12)

or with gn = ∇f(xn) = −rn:

λn = − rTngn

rTnArn
. (2.13)

29

Finally, a simple recursion relation can be derived for successive gradients:

gn+1 = ∇f(xn+1) = Axn+1 − b = Axn − b
︸ ︷︷ ︸

gn

+λnA rn

gn+1 = gn + λnA rn. (2.14)

In summary, the SD algorithm is given by Algorithm 6.

Algorithm 6 Steepest descent

Choose a suitable initial vector x0

g0 = Ax0 − b

for n = 0 to nmax do
rn = −gn

λn =
rTnrn

rTnArn
xn+1 = xn + λnrn
if converged then EXIT
gn+1 = gn + λnArn

end for

We will illustrate the SD method guided by the following simple ex-
ample

A =

(
0.001 0

0 0.01

)

, b =

(
0.001
0.002

)

, c = 0.0007. (2.15)

The trajectories are plotted in Fig. 2.2 on different scales. The coordinates
of the minimum are ξ = (1, 0.2). A 6 digit accuracy takes 76 iterations.
We see the oscillatory trajectory on all scales (panels) in figure 2.2. This is
in strong contradiction to our general consideration that a good gradient
based method ought to yield the exact solution in O(N) steps. The short-
coming is the orthogonality of the search direction. If the first gradient
forms an angle of 45 degrees with the x1-axis so do all following direc-
tions as they are orthogonal to each other. Due to the shape of the contour
lines (metric) this is a particularly bad situation since the line minimum
is always close to the x-axis. For spherical contour lines, i.e.: equal eigen-
values for all principle axes of the matrix A the iteration would reach the
exact solution within two steps. In order to overcome this problem, more
general search directions are required which account for the non-spherical
metric. Such directions are called conjugate directions.

Conjugate Directions

Steepest Descent often finds itself taking steps in the same direction as
earlier steps. The idea is now to pick a set of orthogonal search directions
d0, d1, . . . , dN−1. In each search direction we will take exactly one step and

30

0 5 10 15 20
−10

−5

0

5

10

x
1

x
2

0.1
0.1

0.1

0.1
0.1

0.2 0.2

0.2

0.2 0.2

0.2

0.2

0.3
0.3

0.3

0.3
0.3

0.3

0.4 0.4
0.4

0.4
0.4

0.4

0.5
0.5

0.5 0.5
0.5

0.6

0.6

0.95 1 1.05
0.15

0.2

0.25

5e−006

5e−006

1e−005

1e−005

x
1

x
2

Figure 2.2: Steepest descent trajectory with initial point (20,−1.9) for dif-
ferent resolutions.

that step will be just of the right length to size up evenly with x. After N
steps we will be done.

We choose for each step n + 1 a point

xn+1 = xn + λndn. (2.16)

To find the value of λn we use the fact that the deviation en+1 (the error
vector) from the exact solution x should be orthogonal to dn, so that we
never step into the direction dn again. Using this, we have:

dTnen+1 = 0. (2.17)

Eq. (2.16) also gives
x + en+1 = x + en + λndn (2.18)

which turns Eq. (2.17) into

dTn (en + λndn) = 0,

with the result

λn = −dTnen

dTndn
. (2.19)

Unfortunately, nothing has been accomplished because λn cannot be cal-
culated without knowing the en; but if we knew en the problem would
already have been solved.

The solution is to make the search directions A-orthogonal or conjugate
instead of orthogonal.

Theorem 2.1 Two vectors di and dj are conjugate if

dTi Adj = 0. (2.20)

31

We now require en+1 to be conjugate to dn and this condition is equivalent
to finding the minimum point along the search direction dn:

d

dλ
f(xn+1) = 0

∇f(xn+1)
T d

dλ
xn+1 = 0

−rTn+1dn = 0

dTn

(

b− Ax
︸ ︷︷ ︸

=0

−Aen+1

)

= 0

dTnAen+1 = 0.

As a byproduct of this calculation we find for the residue

rn = b− Ax − Aen = −Aen. (2.21)

Following the derivation of Eq. (2.19) results in an expression for λn if
the search directions are conjugate:

λn = −dTnAen

dTnAdn
(2.22)

(2.21)
=

dTnrn

dTnAdn
. (2.23)

Unlike Eq. (2.19) we can calculate this expression. If we use for the search
vector dn the residue rn then we recover the formula (2.12) for Steepest
Descent.

To prove that this procedure really does compute x in N steps, we ex-
press the initial error term as a linear combination of search directions:

e0 =

N−1∑

j=0

δjdj . (2.24)

The search directions are all conjugate and this makes it possible to elimi-
nate all δj values but one from Eq. (2.24) by multiplying it with dTkA:

dTkAe0 =
∑

j

δjd
T
kAdj

(2.20)
= δkd

T
kAdk.

32

Thus, we get

δk =
dTkAe0

dTkAdk

(2.18)
=

dTkA

(

e0 +

k−1∑

i=0

λidi

)

dTkAdk

(2.16)
=

dTkAek

dTkAdk
(2.25)

By Eqs. (2.22) and (2.25), we find λi = −δi and this opens a new perspective
for the error term:

ei = e0 +

i−1∑

j=0

λjdj

=

N−1∑

j=0

δjdj −
i−1∑

j=0

δjdj

=
N−1∑

j=i

δjdj . (2.26)

AfterN iterations, every component is cut away and eN = 0; we have con-
vergence in N steps. Furthermore, checking on e during each step allows
to decide to leave the algorithm prematurely if a certain accuracy has been
reached.

Finally, we multiply Eq. (2.26) with −dTi A and get:

−dTi Aej = −
N−1∑

k=j

δiAdk

with the result [using Eq. (2.21)]

dTi rj = 0, i < j, (2.27)

because the d-vectors are conjugate and the residual is evermore orthogo-
nal to all old search directions.

Gram-Schmidt Conjugation

All that is needed now is a set of A-orthogonal search directions {di} with
i = 0, . . . , N − 1 and there is a simple way to generate them: The conjugate
Gram-Schmidt process.

Suppose we have a set of N linearly independent vectors {ui} with
i = 0, . . . , N − 1, for instance unity vectors in the coordinate directions.

33

u
0

u
1

d
0 d

0

d
1

u

u*

+

Figure 2.3: Gram-Schmidt conjugation of two vectors. Begin with two lin-
early independent vectors u0 and u1. Set d0 = u0. The vector u1 is com-
posed of two components: u∗ which is A-orthogonal (or conjugate) to d0,
and u+ which is parallel to d0. After conjugation, only the A-orthogonal
portion remains, and d1 = u∗.

To construct di take ui and subtract out all components that are not A-
orthogonal to the previous d-vectors, as is demonstrated in Fig. 2.3. Thus,
we set d0 = u0 and for i > 0 we choose

di = ui +

i−1∑

k=0

βikdk, (2.28)

with the βik defined for i > k. To find their values we use the same trick
used to find the δi in Eq. (2.25):

dTi Adj = uTi Adj +

i−1∑

k=0

βikd
T
kAdj

0 = uTi Adj + βijd
T
j Adj, i > j

βij = −uTi Adj

dTj Adj
. (2.29)

The difficulty in using this method is that, obviously, all the old search vec-
tors must be kept to construct the new search vector. Furthermore, O(N3)
operations are required to generate the full set.

Conjugate Gradients (CG)

In this method, the search directions are constructed by conjugation of
the residuals, i.e.: we set ui = ri and use the fact that the residual is or-
thogonal to all previous search directions as was demonstrated in deriving
Eq. (2.27). Moreover, as each residual is orthogonal to the previous search

34

directions, it is also orthogonal to the previous residuals, and we get

dTi rj
(2.28)
= uTi rj +

i−1∑

k=0

βikd
T
k rj

0
(2.27)
= uTi rj (2.30a)

and
dTi ri = uTi ri. (2.30b)

Finally, our particular choice for the set {ui} results in:

rTi rj = 0, i 6= j. (2.30c)

We can also make use of Eq. (2.14) and gn = −rn to find the recursion
relation to be used to calculate the residual of step n+1 given the residual
of step n:

rn+1 = rn − λnAdn.

After all these preliminaries we are now in a position to calculate the
Gram-Schmidt coefficients for our particular case:

rTi rj+1 = rTi rj − λjr
T
i Adj

λjr
TAdj = rTi r

T
i rj+1

rTi Adj =

1
λi

rTi ri, i = j

− 1
λi−1

rTi ri, i = j + 1

0, otherwise,

and according to Eq. (2.29):

βij =

1
λi−1

rTi ri
dTi−1Adi−1

, i = j + 1

0, i > j + 1.

Thus, most of the βij terms have disappeared. It is no longer necessary to
store old search vectors to ensure A-orthogonality. We now set, for simpli-
fication, βi = βi,i−1 and find:

βi
(2.23)
=

rTi ri

dTi−1ri−1

(2.30b)
=

rTi ri

rTi−1ri−1

.

Let’s put it all together into one piece: After choosing a start vector x0

we get the first direction:

d0 = r0 = b− Ax0.

35

From results calculated in step nwe get the direction dn+1 for the next step
from:

λn =
rTnrn

dTnAdn
(2.31a)

xn+1 = xn + λndn (2.31b)

rn+1 = rn − λnAdn (2.31c)

βn+1 =
rTn+1rn+1

rTnrn
=

gTn+1gn+1

gTngn
(2.31d)

dn+1 = rn+1 + βn+1dn (2.31e)

= gn+1 + βn+1rn. (2.31f)

The corresponding algorithm is presented in symbolic form as Algo-
rithm 7.

Algorithm 7 Conjugate gradient method for quadratic functions

Choose a suitable initial vector x0

r0 = g0 = ∇f
∣
∣
x0

= Ax0 − b

for n = 0 to N do
an = Arn
λn = −(gTngn)/(r

T
nan)

xn+1 = xn + λnrn
gn+1 = gn + λnan
βn+1 = (gTn+1gn+1)/(g

T
ngn)

rn+1 = gn+1 + βn+1rn
if converged then EXIT

end for

2.3 Conjugate Gradient for General Functions

We are now prepared to apply the conjugate gradient idea to general func-
tions f(x). To this end we expand f(x) in each iteration about the actual
reference point xn of the nth step

f(x) = f(xn) + bTn (x − xn) +
1

2
(x − xn)

TAn(x − xn) (2.32a)

bn = ∇f(x)
∣
∣
xn

(2.32b)

(An)ll′ =
∂2

∂xl∂xl′
f(x)

∣
∣
xn
, (2.32c)

where the matrix An is the Hessian. Since (2.32) is a quadratic form it can
easily be cast into the form (2.8), on which CG for quadratic problems
was based, with one significant modification though: The matrix (Hessian)

36

An changes from iteration to iteration as does the vector bn. The iteration
scheme 7 is nonetheless valid. All formulas (2.31) are still valid with the
only modification that matrix A corresponds to the Hessian An of the Tay-
lor expansion about the reference point xn.

Consequently, Algorithm 7 is still valid with the modification that A

has to be replaced in each iteration by the respective Hessian An. This
implies that we have to be able to compute the Hessian which only in
rare cases is given analytically and the numeric computation is inefficient.
Fortunately, An enters only in conjunction with the iteration scheme for
the gradients and in the line minimization or rather the expression for λn.
These steps can be modified. First of all, we replace the update rule for
gn+1 by the definition

gn+1 = ∇f(x)
∣
∣
xn+1

.

We merely require the knowledge of the gradient instead of the Hessian.
Secondly, the parameter λn is obtain more directly via

min
λ

f(xn + λrn) ⇒ λn.

The Eqs. (2.19), (2.27), and (2.30c) are, however, no longer valid for |i−j| >
1, since the matrix A changes from iteration to iteration. If the conjugacy
relation (2.19) were still be valid then the arguments given for quadratic
problems would still hold and convergence is reached within at most N
steps. This, of course, cannot hold for arbitrary non-quadratic functions.

The corresponding algorithm is presented in symbolic form as Algo-
rithm 8.

Algorithm 8 Conjugate gradient method

Choose a suitable initial vector x0

r0 = g0 = ∇f
∣
∣
x0

for n = 0 to nmax do
minλ f(xn + λrn) ⇒ λn
xn+1 = xn + λnrn
gn+1 = ∇f

∣
∣
xn+1

βn+1 = (gTn+1gn+1)/(g
T
ngn)

rn+1 = gn+1 + βn+1rn
if converged then EXIT

end for

2.3.1 The Determinant of Mega-Matrices

In various areas of research determinants of mega-dimensional matrices
are required. All standard approaches fail if the matrix dimension is of the
order 106 × 106 or even bigger. We will see that CG can - with some tricks

37

- be expedient in this case because an exact calculation of the determinant
is not the aim here.

We first need to cast the problem into a form suitable for CG. We rewrite
the matrix of interest, say B, into:

B = 1 + A. (2.33)

We then use the matrix identity1

det [exp(B)] = exp [tr B] . (2.34)

The matrix function exp(B) always converges. We now set C = exp(B)
and write

B = ln(C).

The matrix function ln(C) is defined as the (convergent) Taylor’s expan-
sion of the logarithm.2 ln(C), of course, is a matrix. Thus, Eq. (2.34) results
in

det C = exp { tr ln C} ,
and the matrix identity

ln(det C) = tr[ln(C)] (2.35)

follows as a consequence. This yields together with Eq. (2.33):

ln [det(1 + A)] = tr [ln(1 + A)] = tr

A

1∫

0

dλ
1

1 + λA

 . (2.36)

The correctness of the last step is easily shown by means of the spectral
representation which plays an important role in the definition of matrix
functions. (Obviously, for the above expression to make sense, it is re-
quired that the matrix 1 + λA is not singular!) The integral is computed
numerically by some standard scheme (for instance an Gauss-algorithm)

ln[det(1 + A)] =

M∑

i=1

ωi tr

(

A
1

1 + λiA

)

. (2.37)

Here, the λi are the abscissas and the ωi are the respective weights. (For a
Gauss-Algorithm, the λi are the zeros of Legendre polynomials and the ωi
are the respective weights.)

We have to compute the trace of A(1 + λiA)−1 without being forced to
compute the matrix elements of the matrix A(1+λiA)−1 which, of course,

1J. HILGERT and K.-H. NEEB, Lie-Gruppen und Lie-Algebren, Vieweg, Barunschweig
(1991), p. 14.

2See for instance: F.R. GRANTMACHER, Matrixrechnung, Bd. I, Deutscher Verlag der
Wissenschaften (1958), chapter: Matrizenfunktionen.

38

is not feasible. There is another trick: The trace of a matrix, say M , can be
estimated stochastically by

trM =
1

L

L∑

l=1

(r(l))TMr(l) , (2.38)

with the random variable trM and L is the number of random vectors r(l)

the elements of which are uncorrelated random numbers of zero mean and
unit variance. Thus, the elements of r(l) have the properties

〈

r
(l)
i

〉

= 0, ∀ i (2.39a)
〈

r
(l)
i r

(l′)
j

〉

= δijδll′. (2.39b)

The mean of the random variable trM is then determined from:

〈 trM〉 =

〈

1

L

L∑

l=1

∑

ij

r
(l)
i Mijr

(l)
j

〉

=
1

L

L∑

l=1

∑

ij

Mij

〈

r
(l)
i r

(l)
j

〉

(2.39b)
=

1

L

L∑

l=1

∑

ij

Mijδij

= trM .

We will see in a later chapter on Monte Carlo techniques that the standard
error can be estimated by

tr(M) = trM ± σ√
L
, (2.40a)

with

σ =
1

L

L∑

l=1

[
(r(l))TMr(l) − trM

]2
. (2.40b)

It is noteworthy that in many applications the number L of random vec-
tors required for a certain accuracy decreases with the dimension of the
matrices and typically O(10) vectors are sufficient for one percent accu-
racy.

Eq. (2.37) reads now: The solution y(l) of the set of algebraic equations
is computed by CG and the final result reads

ln[det(1 + A)] =
1

L

M∑

i=1

ωi

L∑

l=1

(r(l))T
A

1 + λiA
r(l). (2.41)

39

With the step
(1 + λiA)y(l) = r(l) (2.42)

the CG-method comes into play and is used to determine the vectors y(l).
We use Eq. (2.42) to give Eq. (2.41) its final form:

ln[det(1 + A)] =
1

L

M∑

i=1

ωi

L∑

l=1

(r(l))TAy(l). (2.43)

This method has the following advantages:

• Only operations matrix A times vector required.

• The dependence on i is hidden in the y(l)

• Operation count (I +1) ∗Nnz ∗L ∗M , where I stands for the average
number of CG steps and Nnz for the number of non-zero elements in
matrix A.
Both L and M are typically of the order 10 − 100.
Hence, the dependence on the matrix dimensionN is much less than
that of the standard approach.The solution y(l) of the set of algebraic
equations is computed by CG.

2.4 Stochastic Optimization/Minimization

Literature

• J. SCHNAKENBERG, Algorithmen in der Quantentheorie und Statistik.
Verlag Zimmermann-Neufang 1994.

• G.S. FISHMAN, Monte-Carlo, Springer 1995.

• W. KINNEBROCK, Optimierung mit genetischen und selektiven Algorith-
men, Oldenbourg Verlag 1994.

• S. GEMAN and D. GEMAN, IEEE Trans. Patt. Anal. Machine Intell.,
6, 721–741 (1984).

• SZU and R. HARTLEY, Fast simulated annealing, Physics Letters A 122,
157 (1987).

Nonlinear problems often have more than one minimum. Steepest De-
scent and Conjugate Gradients methods always yield the local minimum
in the vicinity of the initial point. If there are not too many minima, we can
start SD and CG at different initial points (chosen at random) to obtain the
global minimum. However, there are many problems not accessible to this
procedure. For instance if the problem displays many minima of about
the same depth, SD and CG with random start points are very inefficient.
Examples that are not suited for SD-/CG- based methods are

40

• The Traveling Salesman problem (TSP) is well known to quickly over-
charge any computer if it is directly implemented. If the trip of the
salesman consists of L cities, the number of possibilities is given by
L!. In the TSP the salesman has to visit each city once and the length
of the trip has to be minimized. The problem is of the form

f({i}) =
L∑

ν=1

∣
∣xiν+1

− xiν
∣
∣ , iL+1 = i1.

Here {i} symbolizes a list of indices indicating the order in which the
cities are visited. The minimum of the total cost function f({i}) is re-
quired with

∣
∣xiν+1

− xiν
∣
∣ the distance between two consecutive cities

within the list {i}. iL+1 = i1 indicates periodic boundary conditions.

More realistic applications contain additional constraints and terms
in the cost function.

•

Redistribute the integer numbers
from 1 − 16 in a way that the sums
along all edges have the same value.
There are 16! possible index arrange-
ments.

1615

14

12

13

2 3

4

5

6

71011 8

9

1

• Time tables at school

• Staff at an airport

2.5 Classical Simulated Annealing (CSA)

Literature:

• S. KIRKPATRICK, C.D. GELLAT, JR., and M.P. VECCHI, Simulated An-
nealing, Science 220, 671 (1983).

The idea behind Simulated Annealing is borrowed from physics, specif-
ically from thermodynamics. The method models the way liquids freeze
and crystallize during the annealing process. At high temperatures the
particles can move freely. Differences of potential energies of various con-
figurations are overcome by the particles due to their high kinetic energy.
When the liquid is cooled down slowly, an ordering process sets in, ther-
mal mobility is lost and some optimal configuration (e.g. an ideal crystal)
is achieved. This is a configuration where the cost function (free energy)

41

T=2000

T=1000

T=300

T=200

T=100

T=50

T=20
T=4
T=10

f(x)

-100

-50

0

50

100

150

200

250

300

-4 -2 0 2 4 6x
-100

-50

0

50

100

150

200

250

300

-4 -2 0 2 4 6x
-100

-50

0

50

100

150

200

250

300

-4 -2 0 2 4 6x
-100

-50

0

50

100

150

200

250

300

-4 -2 0 2 4 6x
-100

-50

0

50

100

150

200

250

300

-4 -2 0 2 4 6x
-100

-50

0

50

100

150

200

250

300

-4 -2 0 2 4 6x
-100

-50

0

50

100

150

200

250

300

-4 -2 0 2 4 6x
-100

-50

0

50

100

150

200

250

300

-4 -2 0 2 4 6x
-100

-50

0

50

100

150

200

250

300

-4 -2 0 2 4 6x
-100

-50

0

50

100

150

200

250

300

-4 -2 0 2 4 6x

Figure 2.4: Cost function f(x) (thick solid line) and acceptance probability
pE(x|T) (thin solid lines) for various temperatures T .

attains its absolute minimum. However, if the liquid is cooled down too
quickly, no ideal crystal is obtained and the systems ends in some local
minimum of the energy (meta stable). This corresponds to a poly crys-
talline or amorphous state. As we are interested in finding global min-
ima, we try to simulate the slow cooling process on the computer. To this
end we introduce an artificial temperature T and a probability distribution
pE(x|T), the so-called acceptance distribution for a given configuration x

and a given temperature T . The cost function to be minimized is denoted
by f(x) and can depend on a set of variables x that is either discrete or
continuous. We set

pE(x|T) =
1

Z
e−[f(x)−fmin]/T , (2.44)

which corresponds to a BOLTZMANN distribution. Here Z is a normaliza-
tion factor which corresponds to the partition function of the canonical
ensemble. Notice that the knowledge of fmin is not really required as this
factor can be absorbed in Z. Figure 2.4 shows the cost function (thick solid
line)

f(x) = x4 − 16x2 + 5x , (2.45)

which is frequently used to test optimization schemes. Its extrema have
the coordinates:

x f(x)
-2.9035 -78.3323
0.1567 0.3912
2.7468 -50.0589

Figure 2.4 also depicts the acceptance probability (thin solid lines) for vari-
ous temperatures. At temperatures, much higher than the potential barrier
T ≫ 50, the Boltzmann distribution is rather flat. As soon as the temper-
ature is lower than the potential barrier, e.g. at T = 20, the probability
outside the double-well is almost zero and two separate peaks develop. If
the temperature is even lower than the difference of the two minima, e.g.

42

at T = 10, the probability in the local minimum becomes negligible and
the probability is concentrated merely around the global minimum.

It is the purpose of the distribution pE to assign a high probability to
states x, where f(x) is small, i.e.: states x close to the global minimum. A
random walker will spend a long time near the optimum states. The signif-
icant difference to SD and CG lays in the possibility for the walker also
to go uphill and to leave a local minimum. This possibility however de-
pends on temperature. We define the expectation value of f(x) at a given
temperature T by

〈f〉T =
∑
∫

x

pE(x|T) f(x). (2.46)

The minimum of f(x) as well as the corresponding state x are found by
cooling

min
x
f(x) = lim

T→0
〈f〉T (2.47)

xmin = lim
T→0

max
x

pE(x|T). (2.48)

Thus, an implementation of the CSA method requires the following three
steps

1. Generation of states

2. Acceptance of states

3. A cooling scheme

ad 1: Generation of states In the vicinity of the current point xn (n is the
step index) we create a trial point xt at random. The probability distribu-
tion of xt for continuous problems is typically given by a Gaussian

px(xt − xn) ∝
∏

i

e−(xt−xn)2i /(2σ
2) (2.49)

of a certain variance σ. If the curvature in various directions differs signif-
icantly, this form may be ill adapted. In such a case, it is expedient to use
a px which employs the covariance matrix C instead of the variance σ:

px(xt − xn) ∝ exp

{
1

2
(xt − xn)C

−1(xt − xn)

}

.

For the Traveling Salesman, the tour is represented, e.g. by a list of
indices {i1, i2, . . . , iL} indicating the order in which the cities are visited.
The so-called lin-2-opt move consists in exchanging randomly two indices
in the list

{i1, . . . iν−1, iν , . . . iµ, iµ+1 . . . iL} −→ {i1, . . . iν−1, iµ, . . . iν , iµ+1 . . . iL}.
(2.50)

43

The advantage of local moves is that the change in cost function can usually
be computed much faster than the total cost function

f({i}) =

L∑

ν=1

∣
∣xiν+1

− xiν
∣
∣ , (2.51)

with the periodic boundary condition iL+1 = i1.

ad 2: Acceptance of states For the chosen xt we define an acceptance prob-
ability

q = min

{

1,
pE(xt|T)

pE(xn|T)

}

, (2.52)

which governs the acceptance of the new position xt: If q = 1 we always
accept xt as the new position xn+1. If q < 1 (i.e.: xt is a worse choice than
xn) we sample a pseudo random number r from a uniform distribution
in the interval [0, 1). (We call r an auxiliary probability.) If q ≥ r we accept
xt as the new state xn+1 in the next step. Otherwise the old state is kept
xn+1 = xn. By this trick it will be possible to leave a local minimum.

In this way we generate a series of points {xn}. These states (x1, x2, x3,
. . . , xn) form a Markov chain. This means that

P (xn+1|xn,xn−1 . . .x1) = P (xn+1|xn) , (2.53)

i.e.: the probability to pass to xn+1 depends only on the current point xn
and not on the history of the walker. It can be shown that the trajectory of
the random walker reproduces the probability distribution

pE(x|T) = lim
L→∞

1

L

L∑

i=1

δ(x − xi). (2.54)

This implies that expectation values at a given temperature T can be cal-
culated via

〈f(x)〉T =
∑
∫

x

f(x) pE(x, T)

= lim
L→∞

1

L

L∑

i=1

∫

d3x f(x) δ(x − xi)

= lim
L→∞

1

L

L∑

i=1

f(xi)

(2.55)

by averaging over the Markov chain.
Real problems often display several different scales. Consider as an ex-

ample the traveling salesman at his/her trip from town to town in Ger-
many. The distance from one town to another strongly depends on whether
the town is in the same agglomeration or not. Thus we have two different
length scales:

44

L2 T

<>

L1

C

Figure 2.5: Cost function (solid line) and specific heat (dotted line) of the
traveling salesman problem with two length scales L1 and L2

• Distance between towns of the same agglomeration.

• Distance between different agglomerations.

The existence of different scales is reflected by the way energy decreases
when we lower the temperature. At extremely high temperatures agglom-
eration does not play a role. The salesman travels at random. In the cooling
procedure first the order of the agglomerations to be visited is decided on.
Only then the trip inside each agglomerations is fixed.

We introduce now the difference in ‘energy’ of the two configurations
{i} and {i′} [see Eq. (2.50)] as the difference in the corresponding cost func-
tions (2.51):

E({i′}) − E({i}) = xiν−1
xiµ + xiνxiµ+1

− xiν−1
xiν − xiµxiµ+1

,

with xiνxiµ =
∣
∣xiν − xiµ

∣
∣ the distance between the cities ν and µ in con-

figuration {i}. During the simulation for one specific temperature T we
calculate

〈E〉 =
1

L

∑

{i}

E({i}), and 〈E2〉 =
1

L

∑

{i}

E2({i}),

with the variance
〈∆E2〉 = 〈E2〉 − 〈E〉2.

Here,
∑

{i} indicates the sum over configurations covered in this simula-
tion. This allows to introduce a specific heat C defined as

C
def
=
∂ 〈E〉
∂T

=
〈∆E2〉
T 2

. (2.56)

Considering Fig. 2.5 we get a first cooling rule: Away from phase transi-
tions we can cool down quickly. However, we have to be careful in the
vicinity of such phase transitions, and the specific heat C with its rapid
variation around phase transitions is a good indicator of critical regions.

45

Alternative Proposals

• Threshold Acceptance: A new configuration xt is generated and this
new configuration can, of course, be worse than the one used in the
previous step, namely xn. Nevertheless, if the cost function f(xt) <
f(xn)+T , with T some tolerance level (threshold), then xt is accepted
as a new position of the random walker xn+1. During the iteration the
threshold is continuously reduced. This allows rather effectively to
leave local minima.

• Deluge Algorithms: Accept new configurations xt only if f(xt) > T
with T the acceptance level. T is continuously increased during the
iterations; the landscape is ‘flooded’ until only the summits of the
mountains, and finally only the summit of the biggest mountain is
above the water level.

• Genetic Algorithms: Such algorithms will be presented in Sec. 2.8.

ad 3: Cooling Strategies An important first step is the choice of the ini-
tial temperature T0. At this temperature it should be possible to cover
the best part of the configuration space and it is a rule of thumb that at
this temperature approximately 80% of the configurations should be ac-
cepted. This can easily be done by choosing an approximate value for T0

and by performing N steps. Nr configurations have been rejected and if
Nr/N < 0.2 T0 is accepted as an initial temperature, otherwise we double
T0 and try again.

Nevertheless, a better estimate can be worked out. We start with Eq. (2.56)
and find by integration

〈E〉(T) − 〈E〉(∞) =

T∫

∞

dT ′ 〈∆E2〉(T ′)

T ′2
≈ 〈∆E2〉(∞)

T
, (2.57)

with 〈E〉(∞) and 〈∆E2〉(∞) the mean value and variance of the energy
at T = ∞, respectively. We now choose T0 in such a way that the energy
E(T0) lies just within the area of fluctuation of E(∞), i.e.:

〈E〉(T0) = 〈E〉(∞) −
√

〈∆E2〉(∞).

This gives, using Eq. (2.57), the initial temperature

T0 =
√

〈∆E2〉(∞).

Thus, to find the best T0 it is necessary to start a random walk of length N

during which all configurations will be accepted and to measure
√

〈∆E2〉(∞)
along this walk.

46

To proceed in the simulation we let the walker then do a fixed num-
ber of N steps at every fixed temperature Tk and then the temperature is
lowered according to a simple formula. Of common use is the formula

Tk = T0 q
k with e.g. q = 0.95, (2.58)

which has the obvious drawback of not taking into account any phase
transitions. Close to phase transitions fluctuations are rather large and the
simulation could end up in a configuration far away from the optimum
configuration.

Thus, a more gentle cooling strategy requires that the probability of
acceptance for two consecutive temperatures Tk and Tk+1 differ by a suffi-
ciently small amount, i.e.:

1

1 + δ
<

pE(x|Tk)
pE(x|Tk+1)

< 1 + δ, (2.59)

with δ ≪ 1.
If we make use of the BOLTZMANN distribution (8.1) for equilibrium

we get

pE(x|T) ∝ exp

{

−E({i}) − Emin
T

}

,

with Emin the lowest energy. Because of this, the left hand side of the in-
equality (2.59) is always obeyed for Tk+1 < Tk. Thus

exp

{

−E({i}) − Emin
Tk

+
E({i}) − Emin

Tk+1

}

< 1 + δ

is additionally to be satisfied. This inequality can be solved for Tk+1 and
results in:

Tk+1 >
Tk

1 + Tk
ln(1+δ)

E({i})−Emin

. (2.60)

If we wanted to satisfy this inequality for all configurations {i} we would
end up with Tk+1 = Tk. A rather reliable estimate can be derived from

E({i}) − Emin ≈ 3
√

〈∆E2〉(Tk), (2.61)

and this results in the cooling strategy

Tk+1 >
Tk

1 + Tk
ln(1+δ)

3
√

〈∆E2〉(Tk)

. (2.62)

Since we are interested in a cooling as fast as possible, we take the low-
est possible Temperature Tk+1 and therefore exchange the greater sign in
(2.62) by an equal sign.

47

0 0.5 1 1.5 2

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

t

T(t)

ln
(E

(t
)−

E
0)

0 0.5 1 1.5 2

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

t

T(t)

ln
(E

(t
)−

E
0)

a) b)

Figure 2.6: Illustration of a) CSA and b) FSA with parameters TE0 = 80,
the temperature of the BOLTZMANN engine. T x0 = 1 corresponds to the
2σ2 of Eq. (2.61). The blue curve depicts the values of the logarithm of
E(t) − E0 in time t. E0 is the value of the energy at the global minimum.
The temperature T (t) is chosen according to the optimal cooling schedule.

It has been shown by GEMAN and GEMAN that the optimal cooling
schedule for the BOLTZMANN engine is given by

T (t) ∼ 1

ln t
, (2.63)

with t a ‘time’ parameter, basically the step counter. It guarantees that the
global minimum is visited with probability ONE. The convergence, how-
ever, is rather slow in view of the logarithmic cooling rate.

During the annealing process it is expedient to reduce the extent of the
proposal in such a way that an acceptance rate of about 50% is ensured.
Typically, we measure the acceptance rate during N = 100 steps. If the ac-
ceptance rate is below 40% we decrease the size of the moves, if it is above
60% we increase the size of the moves, otherwise the proposal distribution
is acceptable.

We, finally, need a criterion which can be used to determine whether
the simulation is converged or not, i.e.: is the current temperature Tk the
end temperature Te? To decide this we use the requirement that the expec-
tation value 〈E〉(Te) should differ from the optimum energy Emin only by
a sufficiently small parameter ε. This can be be expressed as:

〈E〉(Te) − Emin
〈E〉(T0) − 〈E〉(Te)

< ε. (2.64)

This results in the criterion

〈∆E2〉(Te)
Te [〈E〉(T0) − 〈E〉(Te)]

< ε (2.65)

which can be derived from Eq. (2.64) with the help of Eqs. (2.57) and (2.56).

48

Algorithm 9 CSA

Choose a suitable initial vector x0

T0 = TE0
for j = 0 to jmax do

for n = 0 to N do
generate trial state xt according to px(xt − xn)
compute q = min(1, pE(xt)/pE(xn))
if q = 1; xn+1 = xt; else

random number r ∈ [0, 1)
if q > r; xn+1 = xt; else xn+1 = xn;

end for
determine Tj+1 (e.g. Tj+1 = Tj ∗ 0.99)
if converged then EXIT

end for

One shortcoming of the CSA method is, that due to the exponential
character of the BOLTZMANN distribution, only short moves, or rather small
modifications, are allowed. Therefore it takes a long time to escape from a
local minimum. This behavior is illustrated in figure 2.6 for the polynomial
cost function (2.45). Even for the simple double well potential we observe
that the walker gets stuck in the local minimum for a long time before it
eventually overcomes the potential barrier which is asymptotically guar-
anteed by the optimal cooling schedule. In this graph TE0 is the tempera-
ture of the BOLTZMANN engine and T x0 corresponds to the 2σ2 according
to Eq. (2.61) which governs the step size in the stochastic minimization of
a function. At the beginning TE0 and T x0 are chosen to result in acceptance
of 80% of the trial value.

Improved algorithms should allow some longer ranging deviations for
the Boltzmann distribution. Such a strategy is introduce in the next section.

2.6 Fast Simulated Annealing (FSA)

Instead of the BOLTZMANN function Fast Simulated Annealing uses the
CAUCHY function for the acceptance distribution. Therefore it is called the
CAUCHY engine in contrast to the BOLTZMANN engine. The D-dimensional
CAUCHY distribution is given by

px(∆x|T) =
T

[(∆x)2 + T 2]
D+1

2

, (2.66)

where D is the dimension of the configuration space. Due to its long rang-
ing tails, the CAUCHY distribution has the advantage to allow occasionally
larger changes in configuration space, while the short range moves are still
Gaussian distributed with a variance σ2 = 2 T 2/(D + 1).

49

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Boltzmann
Cauchy

0

50

100

150

200

-4 -2 0 2 4 6

 f(x)
 Gauss

 Cauchy

a) b)

Figure 2.7: Comparison between a) BOLTZMANN (GAUSS) and CAUCHY

distribution. Frame b) shows the finite probability of a random walker
to jump from the local into the global minimum if it is controlled by a
CAUCHY distribution.

SZU and HARTLEY derived that the optimal cooling schedule for the
CAUCHY engine is given by

T (t) ∼ 1

t
, (2.67)

which is a considerable speed increase compared to the logarithmic cool-
ing schedule of CSA.

In figure 2.8 CSA and FSA are compared based on the double well po-
tential (2.45) discussed before. The temperature entering the proposal dis-
tribution is adjusted every 100 steps to ensure 50% acceptance rate. For
each annealing step N , the lowest energy (value of the cost function) is
stored in E(N). The entire annealing procedure, covering Nmax = 10000
steps is repeated 1000 times and average 〈E(N)〉 is computed for each
value of N separately. We see that FSA is indeed superior.

2.7 Generalized Simulated Annealing (GSA)

• C. TSALLIS and D.A. STARIOLO, Generalized simulated annealing, Phys-
ica A 233, 395 (1996).

• I. ANDRICIOAEI and J.E. STRAUB, Generalized simulated annealing al-
gorithms using Tsallis statistics: Application to conformational optimiza-
tion of a tetra-peptide, Phy. Rev. E, 53, 1996.

For the purpose of a further refinement it is convenient to introduce an
extended notion of entropy depending on a parameter ε

Sε = −1

ε

N∑

i=1

pi
(
1 − p−εi

)
, (2.68)

50

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

〈 E
m

in
〉 N

N

〈 E
m

in
〉 N

N

Figure 2.8: Average minimum energy 〈Emin〉Nreached in step N for FSA
(solid red curve) and CSA (dashed black curve). Initial temperature is T0 =
1000.

the TSALLIS entropy. The limit ε→ 0 the TSALLIS entropy equals the usual
definition of entropy, i.e.:

lim
ε→0

Sε = lim
ε→0

− 1

ε

N∑

i=1

pi
(
1 − e−ε ln pi

)
= −

N∑

i=1

pi ln pi . (2.69)

Given the common axioms, (2.68) is the most general form of an entropy.
It also governs the statistics on fractal structures.

Let us now consider a micro canonical ensemble. This means that the
total internal energy is known and constant

E =
N∑

i=1

piEi. (2.70)

Maximizing the entropy for a given E yields the TSALLIS distribution

pi =
1

Z
(1 + βεEi)

−1/ε, (2.71)

with its limit ε→ 0

lim
ε→0

1

Z
e−

1

ε
ln(1+βεEi) =

1

Z
e−βEi, (2.72)

which, corresponds, again, to the classical distribution. As usualZ denotes
the partition function and β is inversely proportional to the energy E:

Z =

N∑

i=1

(1 + βεEi)
−1/ε, E = kB T =

1

β
. (2.73)

51

100

10

log T0-3-6

CSA GSA

Figure 2.9: Comparison CSA and GSA for the 150 town problem. Conver-
gence is much faster for the GSA method using the Tsallis entropy.

Instead of the BOLTZMANN distribution we can use the TSALLIS distribu-
tion to decide the acceptance of a step of the random walker. In doing so
we gain an additional parameter ε that has to be adapted to the problem.
An engine that

• chooses the moves according to a CAUCHY distribution

• decides upon the acceptance according to a TSALLIS distribution

is called Generalized Simulated Annealing. For some problems, it has the ad-
vantage of much faster convergence. This is illustrated in Figure 2.9 for a
Traveling Salesman Problem with 150 towns.

2.8 Genetic algorithms

Such an algorithm does not only allow local modifications (called muta-
tions) but also the possibility of mating. To explain this, let us assume that
a configuration is mapped on to a string s (e.g.: a DNA, a chromosome,
. . .). Then mating describes the splitting of the strings of two individu-

als into two substrings s
(1)
i , i = 1, 2 and s

(2)
i , i = 1, 2, respectively, which

will then be used to build two ‘new’ individuals, namely
{

s
(1)
1 , s

(2)
2

}

and
{

s
(2)
1 , s

(1)
2

}

.

This idea will be illustrated using the TSP problem. The sequence of
cities, as they appear in the tour, is no permissible string since mutation
could lead to strings in which certain cities occur repeatedly while others
are missing. A permissible string is the sequence of indices s = {s1, . . . , sN},
where si indicates a city not yet visited.

52

A sample list for a 10-city problem is given, for instance, by

s = {9, 4, 3, 3, 5, 1, 4, 2, 2, 1}.

The procedure is illustrated in Table 2.1.

Table 2.1: Sample TSP tour to illustrate the genetic algorithm.

s 1 2 3 4 5 6 7 8 9 10 tour

9 1 2 3 4 5 6 7 8 [9] 10 → 9
4 1 2 3 [4] 5 6 7 8 10 → 4
3 1 2 [3] 5 6 7 8 10 → 3
3 1 2 [5] 6 7 8 10 → 5
5 1 2 6 7 [8] 10 → 8
1 [1] 2 6 7 10 → 1
4 2 6 7 [10] → 10
2 2 [6] 7 → 6
2 2 [7] → 7
1 [2] → 2

The first column contains the string s. We start out with the original list
of cities in natural order {1, . . . , 10} as depicted in the first row. The col-
umn s indicates the contents of which column are to be transferred to the
column named tour. Thus, the content of the first row, column 9 is brack-
eted to indicate that this content is to be moved to the column named tour.
In this case, city 9 is moved to the corresponding element in column tour.
Next the list of cities, without city 9, is compressed (city 9 is eliminated)
and transferred into the second row. Column s indicates that the content of
column 4 has to taken from the actual list. This element, marked in brack-
ets, is city 4 and the index is transferred to column tour, and move on to
the next row.

Eventually the tour represented in city indices reads according to col-
umn tour: tour = {9, 4, 3, 5, 8, 1, 10, 6, 7, 2} as shown in Table 2.1.

The procedure is as follows

• We start with an ensemble of L individuals (states).

• For each individual we introduce a random local modification (mu-
tation).

• Individuals are pairwise combined by the mating process resulting
in 2L individuals.

• Half of the populations are eliminated. I.e.: the L individuals with
the lowest value for the cost function survive.

53

	Minimization/Optimization -- Problems
	Continuous Degrees of Freedom
	General Considerations on Quadratic Problems
	Conjugate Gradient for General Functions
	The Determinant of Mega-Matrices

	Stochastic Optimization/ Minimization
	Classical Simulated Annealing
	Fast Simulated Annealing
	Generalized Simulated Annealing
	Genetic algorithms

